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R. E. Moore ("Interval Analysis," Prentice-Hall, Englewood Cliffs, N. J., 1966)
introduced the centered form for approximating the range l(X) of a rational
function j over X, where X is a real interval. H. Ratschek (SIAM J. Numer. Anal.
17(1980), 656-662), introduced centered forms of higher order. These lH'e, in
general, better approximations than the centered form. If j is a polynomial p,
however, then the centered form and the centered form of higher order lead to the
same approximation. This distinguished behavior of polynomials is investigated and
it is shown that the centered form is the best possible approximation of p(X), if the
centered form is compared with all approximations of p(X) that include p(X) and
depend on the same data of p as those needed in constructing the centered form.

1. INTRODUCTION

Let p be a real polynomial. One is frequently required to compute an
approximation of the range of p over a real interval X, namely,
ft(X) = {p(x): x E Xl. A natural tool for obtaining such an approximation is
the centered form of p computed in interval arithmetic.

Interval arithmetic was defined by Moore [3], who also introduced the
centered form. Here we give a short discussion of the reasons for using
interval arithmetic as well as some of its elementary properties.

Present-day computers employ an arithmetic commonly called fixed length
floating point arithmetic. In this arithmetic real numbers are approximated
by a subset of the real numbers called the machine representable numbers (in
short, machine numbers). These are of the form Pb", where b is the base and
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a and /3 both have a fixed number of digits throughout the calculation
procedure. Any calculation done gives a result of that form which is usually
the closest machine representable value (in short, machine value) to the
actual value for that operation. There are, therefore, two sources of error, for
both real valued data and intermediate results must be approximated by
machine numbers.

Interval arithmetic provides a tool for automatically estimating and
controlling the effect of these errors. Instead of approximating a real value x
by a machine value, a pair of machine values representing an interval is
found such that x lies between these values; that is, such that x lies within
the interval. This leads naturally to the development of an arithmetic for
intervals.

The real number 1 cannot be represented by a machine number. It can,
however, be enclosed in the interval A = [0.33,0.34] (assuming two digit /3's
and a's with b = 10). If we now want to multiply 1by a quantity e which we
know lies in B = [-0.01,0.02], then we seek the smallest interval X which:

(a) contains e13,
(b) does not depend on e and 1, and

(c) depends only on the intervals A and B.

The result of employing these constraints on an arithmetic for intervals is
given below.

Let feR) be the set of real compact intervals (only these are considered
usually). Then operations on feR) satisfying (a), (b) and (c) are defined by

A*B= {a*b:aEA,bEB} for A, BE feR). (1)

The symbol * stands for +, -, " and I, and AlB is only defined if 0 ft. B.
Since (1) is useless in practical calculations, the following formulas which
are equivalent to (1) are preferred (see Moore [3]):

[a, b] + [e, d] = [a + e, b+ d],

[a,bJ- [e,dJ = [a-d,b-e],

[a, b] [e, d] = [min(ae, ad, be, bd), max(ae, ad, be, bd)],

[a, bJl[e,d] = [a,b][lld, lie] if Oft. [e,d].

We write a and -A instead of [a, a] and (-I)A if a E R (set of reals) and
A E feR). Hence expressions like a + A, a - A, Ala, etc., are meaningful.

Powers of intervals may be defined in two different ways. The first version
is called the simple version and it is defined by

and An = A . ... . A (n times) if n ~ 1.
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If A is symmetric, that is, A = [-a, a) then An = [_an, an) if n >- 1. The
second version is called the extended version and it is defined by

An = {an: a E A }

If A = [-a, a) then A 0 = I and

for n >- O.

if n is odd

if n is even, n *- O.

For example, if c, dE A, then A 2 in the simple version is the smallest interval
that contains cd, and A 2 in the extended version is the smallest interval that
contains c2

•

The following procedure is usually followed in interval analysis (especially
if A is symmetric): The theoretical investigations are first done in the simple
version. Then, if suitable, the practical calculations are done in the extended
version because the resulting intervals are then smaller. It is therefore
appropriate to consider both versions in the sequel.

The width or diameter of an interval A = [a, b1 is denoted by
d(A) = b - a. If c E A then d(A) is a measure of how well c is approximated
by A.

Now let p again be a polynomial and X E I(R). The centered form for p
over X is defined as the interval

n

P(X) = p(c) + L plil(C)(X - c)i/i!,
i=1

where c is the midpoint of X and n the degree of p; cf. [1,3).
The centered form has interesting practical and theoretical properties. For

example, the inclusion

p(X) cP(X)

always holds. Practically, it was investigated in [3), where it was argued that
it was a good method for actually approximating the range of a polynomial.
As a further example, in [I, 2) the centered form was shown to converge to
the range of the function with a quadratic convergence on the width of the
interval X.

The centered form furthermore offers remarkable computational
advantages because all the intervals (X - C)i are symmetric in the simple
version. Other suggestions for reducing the width of the approximation use
Bernstein polynomials; cf. [5,6).

The present paper now demonstrates the reason for these good results.
That is, we prove that the centered form is optimal under all approximations
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of the form I:r=o b[Hi that include the range of p over X where the coef
ficients bi depend on the data, p(c), p'(C), ..., p<nl(c), and H = X - c is the
centering of X.

Our demand that the admitted approximations shall depend on the data
mentioned above results from the fact that the centered form also depends on
these data; and a reasonable comparison between various kinds of approx
imations is certainly only then possible if for all these approximations the
same information, in our case the same data, is available. (Please notice that
this concept of dependence of the calculation on certain restricted infor
mation, and not on all of f, is very realistic and occurs practically, for
example, in physical observations, measurements, storage limitations of
computers, etc.) Furthermore, we demand that the approximation can be
calculated by a computer. For this reason we exclude transcendental
operations; that is, the approximation shall be a rational expression of
p(c),... , p<n)(c) and H. In particular, the coefficients bi are rational functions.
Therefore the approximations can be seen as algorithms, where the
parameters (inputs) are p(c),..., p<nl(c), and H.

2. ApPROXIMAnONS AND OPTIMALITY

In this section the definitions are given that are necessary for a precise
treatment of the ideas developed in Section 1.

Let IP be the class of real polynomials of degree at most n. The data of a
polynomial over the interval X will be defined as the operators

for i = 0,..., n.

Using this definition the centered form of p E IP over X may be written as

n

P(X) = L Wi(p) Hili!.
i=O

Let fJ: R n + 1 X feR) -+ feR) be an interval valued polynomial over f(R) of the
form

m

fJ(v o"'" vn' Y) = L b;(vo,'''' vn) yi,
i=O

(2)

where the b/s are rational functions in vo,..., vn •

Then we call fJ an including approximation of the range of the polynomials
of IP with respect to the data Wo,..., Wn (abbreviated, an approximation for
IP), if the inclusion condition

(3 )
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holds for all p E IP and all X E I(R) with H = X-c. The background of the
demand that (3) shall hold for all X E I(R) is the intent that we want to
obtain an algorithm with H (and the data) as inputs. Otherwise, it would be
necessary to find an algorithm for each X.

To avoid long expressions we will write v instead of (vo,"" vn ) such that v
is a variable over R n+ 1 and we write Wp instead of (Wo(p)"", Wn(p)).

Comparing representation (2) with condition (3) for X = [c, c] we get the
value of the absolute coefficient of each approximation fJ for IP, that is,

(4 )

In order to give reasonable criteria for an approximation for IP to be
optimal, we have to decide how to compare the approximations. There are
two practical possibilities which are commonly used:

DEFINITION I. An approximation fJ for IP is called optimal with respect
to inclusion [respectively, optimal with respect to the width] if for each
approximation y for IP

y( Wp , H) c fJ( Wp , H) (respectively, d(y(Wp , H)) ~ d(fJ(Wp , H))]

holds for all p E IP and all symmetrical HE I(R) only then if y = fJ.

Thus, an optimal approximation is a minimal element in the partially
ordered set that consists of the class of all approximations for IP, where the
order relation is either given by the inclusion or by the "less or equal"
relation with respect to the width of the approximating intervals. Definition 1
is independent of a special interval X for the same reason that the definition
of an approximation for IP is.

A connection between the two kinds of optimal approximations is given
below:

LEMMA. If the approximation fJ is optimal with respect to the width then
fJ is optimal with respect to inclusion.

Proof Clear, because y(Wp , H) cfJ(Wp , H) implies d(y(Wp ' H)) ~
d(fJ(Wp , H)) for any approximation y. Q.E.D.

3. OPTIMALITY OF THE CENTERED FORM

In this section it will be shown that the centered form is an optimal
approximation for IP with respect to inclusion. The optimality with respect to
the width will only be shown in the case of simple calculation of powers; cf.
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Section 1. As in the previous section, c will always denote the midpoint of
the interval X and H = X - c = [-z, z].

The following theorem holds for both kinds of power calculation.

THEOREM. The centered form is optimal with recpect to inclusion.

Proof Let fJ(v, Y) = Lr~o bi(v) yi be any approximation for IP such that

fJ( Wp , H) c P(X) (5)

for all p E IP and all X E I(R). Then we have to show that fJ(Wp , H) = P(X)
for all p and X, or equivalently, that

n

fJ(v, H) = L viHi/iL
i~O

We divide the proof into two steps.

Step 1. Let p E IP be such that

(6)

for k = 1,... , n. (7)

Then we will show that fJ(Wp , H) = P(X) for all intervals X (respectively
that bi(Wp ) Hi = wiHi (i = 1,..., n), where Wi = Wi(p)/i! (i = 0,... , n)).

We develop p in a Taylor series around c,

n

p(x) = L wi(x - ct
i~O

We see that p is monotonically increasing in [c, ex)). We define

Xo= [c,c+z] and Ho= X o- c = [0, z].

From the monotonicity, p(Xo) = ft(Xo) follows; cf. [3]. From the
assumptions and the inclusion X o c X we get

Denoting the right endpoint of an interval A by re(A) and writing down P(X)
and p(Xo) explicitly one can see that re(P(X)) = re(p(Xo))' Therefore, by (8),

re(P(X)) = re(fJ(Wp ' H)). (9)

Now we have to distinguish two cases corresponding to the two kinds of
powers:
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(a) Simple version. The symmetry of the powers H; for i ~ 1 implies
that

P(X) = pee) + (re(P(X)) - p(e))[-I, 1]

and

From (9) and bo(Wp) = Wo = pee), cf. (4), we conclude that

P( Wp ' H) = P(X).

(b) Extended version. Equality (9) means that for all z ~ 0

n m

L w;z; = Wo + ~ Ib;(Wp)1 z;
;=0 ;=l,;odd

+
m

~ max{O, b;(Wp )} z;.
i = 2, i even

By comparing coefficients it follows that m = nand

W;= Ib;(Wp)1

W; = b;(Wp)

for odd i,

for even i ~ 2,

which proves Step 1.

Step 2. We only handle the case of extended power calculation. Then
the Theorem is proved by showing that the functions b; which are rational in
v are of the following form:

b;(v)=vdi! or b;(v)=-vdi!

b;(v) = vdi!

b;(v) = 0

if i ~ 2 is even, i::;;; n,

if i ~ n is odd,

if i > n.

(10)

Now, Eqs. (10) hold for all v with VI'"'' vn > O. One can see this in the
following way:

Let v be fixed with VI'"'' Vn > O. Then there exists apE IP with W;(p) = v;
for i = 1,... , n. It follows that P(Wp , H) = P(X) by Step 1. Writing down this
equation (with H = [-z, z] as variable) and comparing coefficients we just
obtain (10) for this fixed v. If i is even, the choice of the sign in (10) depends
on v. Because (10) must hold for any such v and since b; is a rational
function,

b;(v)=v;/i! for all such v or b;(v)=-vd! for all such v.
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Now, bi(v) and vi/v! are two rational functions which are identical on the
set of all vERn +1 with VI"'" Vn > O. Hence they are identical for all
vER n + 1

•

We proceed analogously for odd indices i and also for the simple case of
power calculation. Q.E.D.

In the following Corollary only the simple version for computing powers
is permitted:

COROLLARY. The centered form for IP is an optimal approximation with
respect to the width.

Proof Let fJ be an approximation for IP of form (2) such that
d(fJ(Wp , H)) ~ d(P(X)) for all p E IP and all X E I(R). Because the
midpoints of fJ( Wp , H) and P(X) are equal, we conclude fJ(Wp , H) c p(X),
and fJ( Wp , H) = P(X) by the Theorem. Q.E.D.

Remark 1. The proof of the Corollary cannot be transferred to the
extended version of power calculation, because the proof is based on the
identity of the two midpoints. This identity cannot be guaranteed in the
extended version because the powers Hi are not necessarily symmetric any
more.

Remark 2. The centered forms of higher order which were introduced in
[4] do not lead to better approximations for polynomials than the centered
form, as is the case for rational functions. This follows directly from the
Theorem because the centered form of higher order for polynomials is also of
the form L~o biHi, where the coefficients bi depend rationally on the
admitted data.

4. SUPPLEMENTARY REMARKS

In Section 3, we saw that the centered form is optimal in the class of all
approximations for IP.

In Section 2 care was taken of the precise definition of the approximation
for IP. That is, only such expressions are admitted as approximations that are
rational functions in the data and H. It is now shown that if other operations
leading to non-rational expressions are allowed, then a better inclusion may
be obtained.

EXAMPLE. The following algorithm lead to a better inclusion than the
centered form:
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If [Wi(p) ~ 0 for i = 1,2,... , nand W/p) = 0 for i = 4,6,8,... , nand
W2(p) <2WI(p) <Wip)], then

else

n

fJ(Wp , H) = 2.:
i=O,ieven

n

Wi(p) zi/i! + L Wi(p)[ _Zi, zi]/i!
i= I, i odd

n

fJ(Wp , H) = Wo(p) + L Wi(p) Hili!.
i=1

This algorithm is the centered form for the else statement, otherwise it is
an improvement on the centered form. The first clause says that p is
monotonically increasing in [e, e + z] whereas the two following clauses say
thatp is monotonically increasing in [e-z,e]. Clearly, if all the conditions
hold, then

p(x) = [pee - z), p(e + z)]

as just given by the formula of the then statement.
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